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Finite-size fluctuations in interacting particle systems
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Fluctuations may govern the fate of an interacting particle system even on the mean-field level. This is
demonstrated via a three species cyclic trapping reaction with a large, yet finite number of particles, where the
final number of particledN; scales logarithmically with the system sike N¢~In N. Statistical fluctuations,
that become significant as the number of particles diminishes, are responsible for this behavior. This phenom-
enon underlies a broad range of interacting particle systems including in particular multispecies annihilation

processes.
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[. INTRODUCTION We define the state of the system when one of the species

Balls-in-boxes(urn) models provide a handy laboratory @s_(_jepleted' .to be the final state. Starting from the natural
for studying conceptual issues. The celebrated Ehrenfedfitial conditions where there ard balls of each type, we
model[1-3], for instance, has led to the reconciliation of the sk: “How many balls are there in the final state?” Our main
reversibility and the recurrence paradoxes with Boltzmann'gesult is that the average number of balls in the final dqte
H theorem. Recent examples include urn models of agingcales logarithmically with the system sike
[4-6] and of discretized quantum gravify]. Urn models Statistical fluctuations are ultimately responsible for this
have been studied extensively in probability the@dy-10 behavior. As long as the system contains enough particles
and have found applications ranging from biolopgyl] to  (balls), the average number of particles faithfully character-
computer sciencgl?2,13. izes the state of system. However, as particles deplete, the

Perhaps the most well-known manifestation of the role ofuncertainty with respect to how many particles remain grows
fluctuations in stochastic processes is the Eggenberger-Polymd, moreover, it governs that how many particles are finally
urn model[14]. One starts with two marbles of different |eft.
colors, draws a marble randomly and puts it back together This phenomenon and the mechanism underlying it are
with another marble of the same color. When the process igeneric to interacting particle systems with a decreasing
repeated indefinitely, the fraction of marbles of a given colomumber of particles. We demonstrate this by considering
saturates at some limiting value. The corresponding limit is anultispecies annihilation processes withspecies. In the
random variable that is uniformly distributed between 0 andthree species model, there is again a logarithmic enhance-
1. Thus, initial fluctuations are locked in, a striking examplement of the variance in the number of particles over the
of the lack of self-averaging. average number of particles, thereby leading to a logarithmic

Inspired by this example, our goal is to quantify finite-size growth law. In general, there is an algebraic enhancement as
fluctuations in interacting particle systems using urn modelslong as the number of species is small enough, and conse-
Finite-size corrections are important because they govern fajuently, an algebraic growth law. Otherwise, when the num-
example how a system converges to the thermodynamiber of different species is large enough, statistical fluctua-
limit, yet they remain largely unresolved even in elementarytions are negligible and the number of remaining particles is
stochastic process¢$5-20Q. of order 1. In the most general case wheballs are drawn

We study the role of fluctuations using a three color cyclicfrom the urn, the critical number of speciesgs=2p—1.
urn model. Initially, the urn contains three different types of  The rest of the paper is organized as follows. In Sec. I,
balls. Then, two balls are picked randomly. If they are dis-we give a nontechnical presentation of the cyclic trapping
similar, following a cyclic rule, one of the balls is returned to model and highlight the basic result. We then analyze the
the urn and the other is removed from the system. This urmodel in detail and obtain the number density fluctuations by
model is different from the Eggenberger-Pdélya-type modelsmploying the 1N expansionSec. lll). The g-species anni-
in two ways. First, the number of balls @ecreasingather hilation model is treated in Sec. IV. We conclude with a few
than increasing. Second, our model risnlinear because open questions in Sec. V.
picking two balls rather than one implies that different type

balls interact with each other.
Il. CYCLIC TRAPPING REACTIONS

Let us first define the model. Initially, the urn contains
*Electronic address: ebn@Ilanl.gov balls of three different types, denoted By B, andC. The
"Electronic address: paulk@bu.edu balls interact via a cyclic trapping reaction. Two balls are
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Since initially a(0)=b(0)=c(0)=1, the number densities re-
main equal throughout the entire proces&)=b(t)=c(t)
15 1 =p(t) with

-ca. (3
20 1

< N>

p(t)=(1+t)7L. (4)

Naively assuming that throughout the process, fluctuations in
the number density are much smaller than the mean leads to
St | the conclusion that the final number of particles is of the
order 1,N¢~O(1). The corresponding terminal time scales
= o 8 linearly with the system size;~N. Below, we show that
10 10 10 this assumption does not hold when the total number of par-
N ticles becomes sufficiently small.
The logarithmic growth in the number of particles can be
FIG. 1. The average total number of particles in the final state agleduced from the fluctuations in the number density. In the
a function of the system size. The data represent an average ovfermodynamic limit, we expect that to leading ordemn
10° realizations of the cyclic trapping reaction procesg both the total number of particles and the variance in the
number of particles are proportional to the system size
taken randomly out of the box. If they are different, then one
of the balls is returned to the urn according to the cyclic rule (n) = Np,

0
10° 10

2

A+B—B, B+C—C, C+A—A, (1) <n2>—<n>22N02. ®)

and the second ball is discarded. This elemental step is rgye termo? the intrinsic variance. In Sec. Ill, we shall utilize
peated untll one_oyc the species becomes extinct. Th|§ reactiqfe van Kampen IM expansior[26,27 to show that asymp-
scheme is reminiscent of the Lotka-Volterra cyclic food qiically, the ratio between the intrinsic variance and the den-
chain(or rock-paper-scissorsnodel, widely used in ecology sity grows logarithmically with time
and game theorj11,21-24.

The state of the system is fully specified by the number of a?
particles of each type in the urn; m, andl, corresponding ? ~Int. (6)
to particles of typeA, B, and C. The dynamics is clearly
mean field: every dissimilar pair of particles is equally likely Thus, fluctuations eventually become larger then the density.
to interact. Therefore, the transitiom,m,l)— (n—-1,m,l) Of course, when they are comparable with the density, ex-
occurs with probabilitynm/ (nm+ml+In) and similarly for  tinction is possible. Hence, the number deng#tycharacter-
the other two transitions. izes the particle number only up to a time scglebtained

We start with the initial conditiom=m=I=N and stop the from the validity criterionNp(t;) ~ \No(t;). The terminal

process when one species becomes extinct. Surprisingly, thigne is therefore
number of balls in the final state scales logarithmically with

-1
the system size: ti ~ N(In N)™. (7)

N; ~ In N. (2)  UsingN;~Np(t;) we arrive at our main resu(2). Note that
In N is the leading contribution. The subleading contribu-

Numerical simulations are consistent with this behat#0g.  tion In(In N) corresponding to nested logarithms is tacitly
1). We verified numerically that the scale Mfully charac-  jgnored.

terizes the final number of particles. The distribution of
the final number of particles approaches(rontrivial)
limiting distribution when the final number of particles is

normalized by InN. Thus, the final number of particles in  pyctuations in the particle number are studied by expand-

a non-self-averaging quantity. , , _ . ing the master equation in inverse powerd\bénd keeping
The problem is essentially combinatorial, and, in PriN-only the leading order termdargeN expansion [26]. The

ciple, it can be addressed by weighing all possible hiStorie?;)robability P(n,m,1;t) that the particle numbers arg m,

with the appropriate transition probabiliti¢&5]. It proves 5.4/ at timet obeys the master equation
fruitful, however, to treat the process dynamically. Choosing

the ratenm/N for the transition(n,m,l) — (n,m-1,1) is con-
sistent with the above microscopic rules. Moreover, it leads d—tP(n,m,I) =(Lag* Lect LeaP(nml) (8)
to N-independent dynamics in the thermodynamic limit.

The number densitiea=(n)/N, b=(m)/N, andc=(I)/N  with the initial conditionPy(n,m,l)= &,y nd n- The opera-
evolve according to the rate equations tor Lag is

Ill. PARTICLE NUMBER FLUCTUATIONS
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LagP(n,m,1) =N"YA, - D[nmRAn,m,]; (9) To find out how the distributior(«, 8, y) evolves with

i o time, we write
the operatorgc and L4 are defined via similar formulas.

The difference operatoA raises the respective variable by Fi=(Mag+ Mac+ McpF. (11

one, e.g., It suffices to compute the evolution operatbt ,gF; the two

A f(nm) =f(n+1,ml). (10)  other operators are obtained by cyclic transposition. To ob-
_ . o tain the evolution operators, we replace the distribufaoy
Since in the thermodynamic limit, averages as well as in Eq. (8) and convert difference equations into differential
variances grow linearly with the system size as in@j.we  ones by expanding difference operators and keeping up to
introduce the transformatioR(n,m,) — F(«, B, y) with second order terms, e_g\A_,1+(9n+%ann_ Similarly, we re-
_ 12 _ 12 _ 12 place derivatives with respect towith derivatives with re-
n=Na+N", m=Nb+N"8, 1=Nc+N"y. spect toa using d,=N"27,. The time derivative becomes
The intensivegrandon) variablesa, B, andy areN indepen-  3,—N*2ad,~N"?bd;~N'?Cg, where the overdot denotes dif-

dent. These variables simply characterize fluctuations in théerentiation with respect to time. These transformations lead
respective particle numbers. to

Fo - NY2(@aF , + bF g+ ¢F ) = (N"1g, + SN2, )[(Na+ NY2a) (Nb+ NY2B)F] + (c.t) (12)

where(c.t) denotes the two terms obtained by cyclic trans-  Writing U={a?)+2aB) andV={(a?)-(aB), we separate
position of the displayed term on the right-hand side. Thisthe above equations

master equation contains terms of various orderBl.imThe
orderNY2 terms vanish because the densities satisfy the rate

equations(3). The next leading order term gives the evolu- — =—4pU + p?,
tion operator dt
12 (16)
MABF = paa[(a + IB)F] + Ep Faa' (13) dV \ o+ 2
=PV
Explicitly, the Fokker-Planck equatiofil) is dt
Fe=plaa(a+ B)+p(B+y) +d) v+ a)]F Using the number densiti), we obtain the explicit expres-
+1p2(Fou+Fpp+F,,). (14)  sions
This Fokker-Planck equation is subject to the initial condi- U=2(1+01 (1 +0
tion Fo(a, 8,7)=8(@) B &(). =@+ -+,
Moments of the probability distributior(a,3,y) di- (17)

rectly follow from Eq. (14). One simply multiplies this V=(1+)7 In(L+1).

Fokker-Planck equation by the desired powersypf3, and

v, and integrategby partg with respect to these three vari- Physically, U={a(a+8+7)) quantifies the correlation be-
ables. Due to symmetry, there is essentially one first motween the single particle number and the total particle
ment:(a); two second momentsga?),(ap); three third mo-  numbern+m+I1, while V=(a(a-p8)) quantifies the correla-
ments: (a®),(a?B),(aBy); etc. The first moment satisfies tion between the particle numberand the number differ-
(d/dt){@)=-2p(a) and since it vanishes initiallye)=0. The  encen—m. Intuitively, we expect that the quantiyyis larger

two second moments are coupled thanU. For a sufficiently large system, it may be arbitrarily
larger.
e One of th d s the intrinsic vari
= —20(a?) -2 +p2 ne of the two second moments is the intrinsic variance
dt plac) = 2p(ap) +p (@ =2 explicitly,
(15
d<a’ﬁ> _ 2 0—2 2
Tar CPle) = 3plap). F=§[In(1+t)+%—%(1+t)‘3]. (18)

These equations are inhomogeneous, so despite of the van-
ishing initial conditionga?)=(a8)=0, the solutions are non- The other(normalized by the densitysecond moment quan-
trivial. tifies cross correlations between different species numbers
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p=[1+(q- D™ (24)
Fluctuations can be obtained following the same straight-

tions between different particle numbers are anticorrelated"ents and we merely highlight the derivation. fepr3, the

@ = —%[ln(l +)-3+3+07° 9

Asymptotically,(a8) =—d?/2 with probability distributionP(n,m, 1) evolves according to Eq.
(8) with the operatot 55 defined via
~ 241
o? =3t Int. (20 LagP=N"YApAg - D[nmP]. (25)

Another important consequence of the structure of thel_
Fokker-Planck equation is that the multivariate distribution
P(n,m,l) is Gaussian and fully characterized by the first and

he probability distributiorF(«a, 8, 7y) evolves according to
Eqg. (11) with the evolution operator now being

second order moments. This is the case because the first p? )
order derivatives in Eqi14) have linear coefficientf26]. As MpgF = p(d,+ dp)l(a+ BIF] + E(ﬁa +dp)F. (26
a result, the individual particle number distribution is also
Gaussian For arbitraryq, there areq(q—1)/2 such operators. Again,
2 the first moment ofF vanish; the second moments are
P(n,t) = ;ex - w] (21  coupled as follows:
V2mNg? 2No? 4
o
a - 2a- 1p(a?) - 2(q- Dpl{apB) + (d- p?,
IV. MULTISPECIES ANNIHILATION (27)
. . . KapB) _ 2 2
We have examined the question “how many particles re- 5~ =~ 2p{a®) = 229 = 3)p{ap) + p*.

main in the final state?” in a number of other interacting
particle systems where depletion or extinction occurs and itn contrast with the cyclic trapping reaction, the cross corre-
is found that, generically, fluctuations play an important role.lation initially grows, although asymptotically it is again
Using the same validity criterion, and utilizing the van Ka- negative.
mpen’s 1N expansion, one can determine the final number Let U=(a?)+(q—1){aB) and V=(a?)—(ap); the former
of remaining particles. quantity measures the correlation betweemnd the total

We demonstrate this for multispecies annihilation pro-particle number, the latter measures the correlation between
cesses. Initially, the urn contaires types of balls and the n andn-m. To treat different values af on the same foot-
initial number of each species is equal b For instance, ing, we rescale the time variable and introduce(q- 1)t.

wheng=3, The number density23) becomesp=(1+7)"! and the rate
A+B—0 B+C—0 C+A—0. 22) equations for the quantitidd andV are
This process, introduced by ben-Avraham and Redner, was v = — 4pU + 2p?
studied primarily in low spatial dimensions via a number of dr '
numerical and analytical techniques, yet it is still not fully (28)
understood 27-29. dv g-2 q-2,
The parameteq is in principle integer. However, it is still dr =" 2_q _ 1PV+ _q —1F

sensible to treat it as a continuous variable in the range

2<g<~. The g-species annihilation process can be refor-The solution for the first quantity is therefogeindependent
mulated as a two-species annihilation model by combiningand apart from the numerical prefactor, as in the cyclic trap-
g—1 of the species into one grouyp@) and the remaining ping modeI,U:g[(1+r)‘1—(1+7-)‘4]. Two different behav-
specie into a second groy) [30]. The reaction scheme jors are found for the second quantity:

becomesA+A— 0 andA+B— 0. The ratio between the re-

action rates of the two channelg,—2)/(q-1), is a continu- a- 2[(1 +7) Lo (L4720 g3
ous parameter that need not necessarily correspond to an q- ’
integerq V=
: 1
The transition rates are as in the cyclic trapping reaction: 5(1 +77 In(1 +17) q=3.
(n,m,l,..)—(Mn-1,m-1,,...) occurs with ratenm/N.
For symmetric initial conditions, the number densjiya (29

=b=c="-- satisfies Asymptotically, the cross correlation is negative because

p ) (aB)y=-(1/q-2)V and so generically, fluctuations between
T (q-1p%, (23 the numbers of different species are anticorrelated. Early on,
the cross correlation increases, but after a short transient it
and the initial conditiorp(0)=1. The concentration is there- becomes negativeFig. 2).

fore In the long time limit,o?=(1-q Y V:
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=4 case.

The casey=2 is special since there is a conservation law
(n-m is conserveyland thereforeV=0. Consequentlyg?
~p~t7L If a q species aggregation, rather than annihilation

process is considered, that is, whénand B interact the
outcome is eitheA+B— A or A+B— B (both taken with

1 equal probability, then this anomaly disappedi7,28 and
\ Eqg. (31) holds forq=2 as well.
\ One may ask “why is the critical number of species equal
0.05 | \ to 3?"Mathematically, the answer is ultimately related to the
smaller eigenvalue of the>2 matrix coupling the second
moments. Yet given the simplicity of the multispecies urn
01 : : . . model, a heuristic and more illuminating derivation may be
possible after all. Finding such an argument is an interesting
t challenge.

In this context, we mention a generalization of the urn
model from two-particle to the many-particle interactions.
That is, instead of picking two particleg particles are
picked and if they are all of different species, all are removed
from the systentthis process is well defined fgr=q). The
rate equations for the second moments yield the critical num-
ber of speciegsee the Appendix

<of>
o

FIG. 2. The cross-correlation vs time for the cyclic trapping
model and the three-species annihilation.

G- g <3,
q=3, (30)
q>3.

g Int
P low

Therefore, fluctuations are relevant asymptotically only 9e(P) =2p - 1. (32)
whenq= 3. Applying the criterionyNo %(t;) ~ Np(t;) yields
the final time t;(N) and consequently, the typical final
number of particles

Thus, for ternary interactiong.=5. The structure of the
phase transition remains the same. There is an algebraic
growth in the total number of remaining particles as a func-
tion of the system size wheyp<q,, a logarithmic growth at

NE02 <3 . , ; " .
' the critical pointg=q., and saturation above the critical point
Ni~9{In N q=3, (31)  g>q. Last, we mention that a similar phase transition un-
Ol1) q>3. derlies two-species reaction processes of the type constructed

from the g-species annihilation by separating species into
There is an algebraic growth in the fluctuations dominatedwo groups. In this case, although the transition depends on
regimeq< 3. At the critical pointqg,=3, logarithmic growth  the reaction rates rather than the number of species, its struc-
occurs. Otherwise, the final number of particles saturates atture remains the same.
finite value. Still, the final number divergel;~ (q—3)7%, in
the vicinity of the critical pointg| 3. The saturation is illus-

trated in Fig. 3 using numerical simulation data for e V. CONCLUSION

In summary, we considered interacting particle systems
undergoing depletion on the mean-field level. We showed
that finite-size fluctuations display a rich behavior. The be-
havior is rather generic and applies to a wide class of sto-
chastic processes with a decreasing number of particles.
Typically, there is a phase transition as a function of the
number of species or the reaction rates. In one region of
parameter space, the final number of particles grows algebra-
ically, and in the other, it saturates at a finite value. The
critical case is marked by a logarithmic growth. We conclude
that the final number of particles as a function of system size
provides a practical probe of statistical fluctuations.

The findings in the cyclic trapping model have a neat
o . . . . . . game theoretic implication. In a rock-paper-scissor game in-

10° 10" 10% 10° 10* 10° 10° 10 volving fixed strategy players and loser-is-out rules, the
N game ends when all remaining players have the same strat-
egy. If players pair randomly, then the ultimate number of

FIG. 3. The average total number of particles in the final state agvinners scales logarithmically with the total number of play-

a function of the system size fo=4. The data represents an aver- ers. Intuitively, we expect that a similar law emerges for
age over 1B realizations of the four-species annihilation process. tournaments with simultaneous play.

10 | :

<N;>

7
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Several questions arise naturally. Can one explain théhe species is always the most or least numerous?
critical number of species using heuristic arguments? Statis- We studied systems undergoing depletion. However, there
tical properties of the final state and how the system apare processes in which depletion is possible but not certain,
proaches it are interesting as well. For example, what is théor example, infection processgal]. It will be interesting to
number distribution of remaining particles? How different investigate finite size fluctuations in this related class of in-
are statistical properties of the system at the very end of theeracting particle systems.
process when only a single species remains?

We Qbserved that the convergence to the asymptotic be- ACKNOWLEDGMENTS
havior is much faster when the first extinction occurs com-
pared with the very end state when only a single species We are thankful to Matt Hasting, Sid Redner, and Zoltan
remains. Last, an interesting question involves extremaloroczkai for useful discussions. This research was sup-
characterizatiorj19,2Q: What is the probability that one of ported by DOE Grant No(W-7405-ENG-36.

APPENDIX: p-PARTICLE ANNIHILATION
For p-particle annihilation, the density evolves according to

d q—l) .
g9 __ _ Al
at” (p_l p (A1)

The evolution operators for the Fokker-Planck equatiorFfare straightforward generalizations of Eg6). For example, for
the ternary(p=3) annihilation proces#+B+C—0,

MpscF = p*(d,+ dg+ d,)[(a+ B+ y)F]
3
+ %(aa + g+ d,)°F. (A2)

The second moments are coupled as follows

d(<a2>> NACE PN\ p-1 ((a2>> p-1
— :_pr +Pp

dt\(apB) q-2 q-2 q-2 (ap) q-2
(p-1) +p -2

p-2 p-2 p-1
)t, the density is simplyp=(1+7)~YP"D The quantityU=(a?)+(q-1){apB)

(A3)

Introducing the time variable:(p—l)(g_1

satisfies(d/dnU+[2p/(p-1)]pPU=[p/(p-1)]pP and the solution is agaig independent
__P ~1/(p-1) ~2pi(p-1)
=——1 -1 Pp-1)] A4
U(7) 2p—1[( +7) (1+7) ] (A4)
The quantityV={a?) —(ap) satisfiesd/d7V+[2(q-p)/(p—1)(q-1)]p"V=[q-p/(p-1)(g-1)]pP. The solution reads

%[(1 + ) UED (1 4 2@ DD Dl g% 2p-1,
V(7) = (A5)

(1+T)—[1/(P—1)] In(1+7) =2p-1.
2(p-1) e

Interestingly, in the fluctuation dominated regintesi2p-1, the exponent governing the terminal timepisndependenti;
~N@D72 The final number of particles is

NL@p-1-0/2-D] g < 2p-1,
N¢~{In N q=2p-1, "
o(1) 9>2p-1.
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