
Finite-size fluctuations in interacting particle systems

E. Ben-Naim*
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

P. L. Krapivsky†

Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachussets 02215, USA
(Received 19 December 2003; published 28 April 2004)

Fluctuations may govern the fate of an interacting particle system even on the mean-field level. This is
demonstrated via a three species cyclic trapping reaction with a large, yet finite number of particles, where the
final number of particlesNf scales logarithmically with the system sizeN, Nf , ln N. Statistical fluctuations,
that become significant as the number of particles diminishes, are responsible for this behavior. This phenom-
enon underlies a broad range of interacting particle systems including in particular multispecies annihilation
processes.
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I. INTRODUCTION

Balls-in-boxes(urn) models provide a handy laboratory
for studying conceptual issues. The celebrated Ehrenfest
model[1–3], for instance, has led to the reconciliation of the
reversibility and the recurrence paradoxes with Boltzmann’s
H theorem. Recent examples include urn models of aging
[4–6] and of discretized quantum gravity[7]. Urn models
have been studied extensively in probability theory[8–10]
and have found applications ranging from biology[11] to
computer science[12,13].

Perhaps the most well-known manifestation of the role of
fluctuations in stochastic processes is the Eggenberger-Pólya
urn model [14]. One starts with two marbles of different
colors, draws a marble randomly and puts it back together
with another marble of the same color. When the process is
repeated indefinitely, the fraction of marbles of a given color
saturates at some limiting value. The corresponding limit is a
random variable that is uniformly distributed between 0 and
1. Thus, initial fluctuations are locked in, a striking example
of the lack of self-averaging.

Inspired by this example, our goal is to quantify finite-size
fluctuations in interacting particle systems using urn models.
Finite-size corrections are important because they govern for
example how a system converges to the thermodynamic
limit, yet they remain largely unresolved even in elementary
stochastic processes[15–20].

We study the role of fluctuations using a three color cyclic
urn model. Initially, the urn contains three different types of
balls. Then, two balls are picked randomly. If they are dis-
similar, following a cyclic rule, one of the balls is returned to
the urn and the other is removed from the system. This urn
model is different from the Eggenberger-Pólya-type models
in two ways. First, the number of balls isdecreasingrather
than increasing. Second, our model isnonlinear because
picking two balls rather than one implies that different type
balls interact with each other.

We define the state of the system when one of the species
is depleted to be the final state. Starting from the natural
initial conditions where there areN balls of each type, we
ask: “How many balls are there in the final state?” Our main
result is that the average number of balls in the final stateNf
scales logarithmically with the system sizeN.

Statistical fluctuations are ultimately responsible for this
behavior. As long as the system contains enough particles
(balls), the average number of particles faithfully character-
izes the state of system. However, as particles deplete, the
uncertainty with respect to how many particles remain grows
and, moreover, it governs that how many particles are finally
left.

This phenomenon and the mechanism underlying it are
generic to interacting particle systems with a decreasing
number of particles. We demonstrate this by considering
multispecies annihilation processes withq species. In the
three species model, there is again a logarithmic enhance-
ment of the variance in the number of particles over the
average number of particles, thereby leading to a logarithmic
growth law. In general, there is an algebraic enhancement as
long as the number of species is small enough, and conse-
quently, an algebraic growth law. Otherwise, when the num-
ber of different species is large enough, statistical fluctua-
tions are negligible and the number of remaining particles is
of order 1. In the most general case whenp balls are drawn
from the urn, the critical number of species isqc=2p−1.

The rest of the paper is organized as follows. In Sec. II,
we give a nontechnical presentation of the cyclic trapping
model and highlight the basic result. We then analyze the
model in detail and obtain the number density fluctuations by
employing the 1/N expansion(Sec. III). Theq-species anni-
hilation model is treated in Sec. IV. We conclude with a few
open questions in Sec. V.

II. CYCLIC TRAPPING REACTIONS

Let us first define the model. Initially, the urn contains
balls of three different types, denoted byA, B, andC. The
balls interact via a cyclic trapping reaction. Two balls are
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taken randomly out of the box. If they are different, then one
of the balls is returned to the urn according to the cyclic rule

A + B → B, B + C → C, C + A → A, s1d

and the second ball is discarded. This elemental step is re-
peated until one of the species becomes extinct. This reaction
scheme is reminiscent of the Lotka-Volterra cyclic food
chainsor rock-paper-scissorsd model, widely used in ecology
and game theoryf11,21–24g.

The state of the system is fully specified by the number of
particles of each type in the urn:n, m, and l, corresponding
to particles of typeA, B, and C. The dynamics is clearly
mean field: every dissimilar pair of particles is equally likely
to interact. Therefore, the transitionsn,m, ld→ sn−1,m, ld
occurs with probabilitynm/ snm+ml+ lnd and similarly for
the other two transitions.

We start with the initial conditionn=m= l =N and stop the
process when one species becomes extinct. Surprisingly, the
number of balls in the final state scales logarithmically with
the system size:

Nf , ln N. s2d

Numerical simulations are consistent with this behaviorsFig.
1d. We verified numerically that the scale lnN fully charac-
terizes the final number of particles. The distribution of
the final number of particles approaches asnontriviald
limiting distribution when the final number of particles is
normalized by lnN. Thus, the final number of particles in
a non-self-averaging quantity.

The problem is essentially combinatorial, and, in prin-
ciple, it can be addressed by weighing all possible histories
with the appropriate transition probabilities[25]. It proves
fruitful, however, to treat the process dynamically. Choosing
the ratenm/N for the transitionsn,m, ld→ sn,m−1,ld is con-
sistent with the above microscopic rules. Moreover, it leads
to N-independent dynamics in the thermodynamic limit.

The number densitiesa=knl /N, b=kml /N, and c=kll /N
evolve according to the rate equations

da

dt
= − ab,

db

dt
= − bc,

dc

dt
= − ca. s3d

Since initially as0d=bs0d=cs0d=1, the number densities re-
main equal throughout the entire processastd=bstd=cstd
=rstd with

rstd = s1 + td−1. s4d

Naively assuming that throughout the process, fluctuations in
the number density are much smaller than the mean leads to
the conclusion that the final number of particles is of the
order 1,Nf ,Os1d. The corresponding terminal time scales
linearly with the system size,tf ,N. Below, we show that
this assumption does not hold when the total number of par-
ticles becomes sufficiently small.

The logarithmic growth in the number of particles can be
deduced from the fluctuations in the number density. In the
thermodynamic limit, we expect that to leading order inN,
both the total number of particles and the variance in the
number of particles are proportional to the system size

knl . Nr,
s5d

kn2l − knl2 . Ns2.

We terms2 the intrinsic variance. In Sec. III, we shall utilize
the van Kampen 1/N expansion[26,27] to show that asymp-
totically, the ratio between the intrinsic variance and the den-
sity grows logarithmically with time

s2

r
, ln t. s6d

Thus, fluctuations eventually become larger then the density.
Of course, when they are comparable with the density, ex-
tinction is possible. Hence, the number densitys4d character-
izes the particle number only up to a time scaletf obtained
from the validity criterionNrstfd,ÎNs2stfd. The terminal
time is therefore

tf , Nsln Nd−1. s7d

UsingNf ,Nrstfd we arrive at our main results2d. Note that
ln N is the leading contribution. The subleading contribu-
tion lnsln Nd corresponding to nested logarithms is tacitly
ignored.

III. PARTICLE NUMBER FLUCTUATIONS

Fluctuations in the particle number are studied by expand-
ing the master equation in inverse powers ofN and keeping
only the leading order terms(large-N expansion) [26]. The
probability Psn,m, l ; td that the particle numbers aren, m,
and l at time t obeys the master equation

d

dt
Psn,m,ld = sLAB + LBC + LCAdPsn,m,ld s8d

with the initial conditionP0sn,m, ld=dn,Ndm,Ndl,N. The opera-
tor LAB is

FIG. 1. The average total number of particles in the final state as
a function of the system size. The data represent an average over
105 realizations of the cyclic trapping reaction process(1).
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LABPsn,m,ld = N−1sDA − 1dfnmPsn,m,ldg; s9d

the operatorsLBC andLCA are defined via similar formulas.
The difference operatorD raises the respective variable by
one, e.g.,

DA fsn,m,ld = fsn + 1,m,ld. s10d

Since in the thermodynamic limit, averages as well as
variances grow linearly with the system size as in Eq.(5), we
introduce the transformationPsn,m, ld→Fsa ,b ,gd with

n = Na+ N1/2a, m= Nb+ N1/2b, l = Nc+ N1/2g.

The intensivesrandomd variablesa, b, andg areN indepen-
dent. These variables simply characterize fluctuations in the
respective particle numbers.

To find out how the distributionFsa ,b ,gd evolves with
time, we write

Ft = sMAB + MBC + MCAdF. s11d

It suffices to compute the evolution operatorMABF; the two
other operators are obtained by cyclic transposition. To ob-
tain the evolution operators, we replace the distributionP by
F in Eq. s8d and convert difference equations into differential
ones by expanding difference operators and keeping up to
second order terms, e.g.,DA→1+]n+ 1

2]nn. Similarly, we re-
place derivatives with respect ton with derivatives with re-
spect toa using ]n=N−1/2]a. The time derivative becomes

]t−N1/2ȧ]a−N1/2ḃ]b−N1/2ċ]g where the overdot denotes dif-
ferentiation with respect to time. These transformations lead
to

Ft − N1/2sȧFa + ḃFb + ċFgd = sN−1]a + 1
2N−1/2]aadfsNa+ N1/2adsNb+ N1/2bdFg + sc.t.d s12d

wheresc.t.d denotes the two terms obtained by cyclic trans-
position of the displayed term on the right-hand side. This
master equation contains terms of various orders inN. The
orderN1/2 terms vanish because the densities satisfy the rate
equationss3d. The next leading order term gives the evolu-
tion operator

MABF = r]afsa + bdFg + 1
2r2Faa. s13d

Explicitly, the Fokker-Planck equations11d is

Ft = rf]asa + bd + ]bsb + gd + ]gsg + adgF

+ 1
2r2sFaa + Fbb + Fggd. s14d

This Fokker-Planck equation is subject to the initial condi-
tion F0sa ,b ,gd=dsaddsbddsgd.

Moments of the probability distributionFsa ,b ,gd di-
rectly follow from Eq. (14). One simply multiplies this
Fokker-Planck equation by the desired powers ofa, b, and
g, and integrates(by parts) with respect to these three vari-
ables. Due to symmetry, there is essentially one first mo-
ment: kal; two second moments:ka2l ,kabl; three third mo-
ments: ka3l ,ka2bl ,kabgl; etc. The first moment satisfies
sd/dtdkal=−2rkal and since it vanishes initially,kal=0. The
two second moments are coupled

dka2l
dt

= − 2rka2l − 2rkabl + r2,

s15d
dkabl

dt
= − rka2l − 3rkabl.

These equations are inhomogeneous, so despite of the van-
ishing initial conditionska2l=kabl=0, the solutions are non-
trivial.

Writing U=ka2l+2kabl and V=ka2l−kabl, we separate
the above equations

dU

dt
= − 4rU + r2,

s16d
dV

dt
= − rV + r2.

Using the number density(4), we obtain the explicit expres-
sions

U = 1
3fs1 + td−1 − s1 + td−4g,

s17d
V = s1 + td−1 lns1 + td.

Physically, U=kasa+b+gdl quantifies the correlation be-
tween the single particle numbern and the total particle
numbern+m+ l, while V=kasa−bdl quantifies the correla-
tion between the particle numbern and the number differ-
encen−m. Intuitively, we expect that the quantityV is larger
thanU. For a sufficiently large system, it may be arbitrarily
larger.

One of the two second moments is the intrinsic variance
ka2l;s2; explicitly,

s2

r
=

2

3
flns1 + td + 1

6 − 1
6s1 + td−3g . s18d

The othersnormalized by the densityd second moment quan-
tifies cross correlations between different species numbers
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kabl
r

= −
1

3
flns1 + td − 1

3 + 1
3s1 + td−3g . s19d

The quantitykabl is always negative and therefore, fluctua-
tions between different particle numbers are anticorrelated.
Asymptotically,kabl.−s2/2 with

s2 . 2
3 t−1 ln t. s20d

Another important consequence of the structure of the
Fokker-Planck equation is that the multivariate distribution
Psn,m, ld is Gaussian and fully characterized by the first and
second order moments. This is the case because the first
order derivatives in Eq.(14) have linear coefficients[26]. As
a result, the individual particle number distribution is also
Gaussian

Psn,td .
1

Î2pNs2
expF−

sn − Nrd2

2Ns2 G . s21d

IV. MULTISPECIES ANNIHILATION

We have examined the question “how many particles re-
main in the final state?” in a number of other interacting
particle systems where depletion or extinction occurs and it
is found that, generically, fluctuations play an important role.
Using the same validity criterion, and utilizing the van Ka-
mpen’s 1/N expansion, one can determine the final number
of remaining particles.

We demonstrate this for multispecies annihilation pro-
cesses. Initially, the urn containsq types of balls and the
initial number of each species is equal toN. For instance,
whenq=3,

A + B → 0, B + C → 0, C + A → 0. s22d

This process, introduced by ben-Avraham and Redner, was
studied primarily in low spatial dimensions via a number of
numerical and analytical techniques, yet it is still not fully
understoodf27–29g.

The parameterq is in principle integer. However, it is still
sensible to treat it as a continuous variable in the range
2,q,`. The q-species annihilation process can be refor-
mulated as a two-species annihilation model by combining
q−1 of the species into one group(A) and the remaining
specie into a second group(B) [30]. The reaction scheme
becomesA+A→0 andA+B→0. The ratio between the re-
action rates of the two channels,sq−2d / sq−1d, is a continu-
ous parameter that need not necessarily correspond to an
integerq.

The transition rates are as in the cyclic trapping reaction:
sn,m, l , . . .d→ sn−1,m−1,l , . . .d occurs with ratenm/N.
For symmetric initial conditions, the number densityr=a
=b=c=¯ satisfies

dr

dt
= − sq − 1dr2, s23d

and the initial conditionrs0d=1. The concentration is there-
fore

r = f1 + sq − 1dtg−1. s24d

Fluctuations can be obtained following the same straight-
forward steps the led to the evolution equations for the mo-
ments and we merely highlight the derivation. Forq=3, the
probability distributionPsn,m, ld evolves according to Eq.
(8) with the operatorLAB defined via

LABP = N−1sDADB − 1dfnmPg. s25d

The probability distributionFsa ,b ,gd evolves according to
Eq. s11d with the evolution operator now being

MABF = rs]a + ]bdfsa + bdFg +
r2

2
s]a + ]bd2F. s26d

For arbitraryq, there areqsq−1d /2 such operators. Again,
the first moment ofF vanish; the second moments are
coupled as follows:

dka2l
dt

= − 2sq − 1drka2l − 2sq − 1drkabl + sq − 1dr2,

s27d
dkabl

dt
= − 2rka2l − 2s2q − 3drkabl + r2.

In contrast with the cyclic trapping reaction, the cross corre-
lation initially grows, although asymptotically it is again
negative.

Let U=ka2l+sq−1dkabl and V=ka2l−kabl; the former
quantity measures the correlation betweenn and the total
particle number, the latter measures the correlation between
n andn−m. To treat different values ofq on the same foot-
ing, we rescale the time variable and introducet=sq−1dt.
The number density(23) becomesr=s1+td−1 and the rate
equations for the quantitiesU andV are

dU

dt
= − 4rU + 2r2,

s28d
dV

dt
= − 2

q − 2

q − 1
rV +

q − 2

q − 1
r2.

The solution for the first quantity is thereforeq independent
and apart from the numerical prefactor, as in the cyclic trap-
ping model,U= 2

3fs1+td−1−s1+td−4g. Two different behav-
iors are found for the second quantity:

V =5
q − 2

q − 3
fs1 + td−1 − s1 + td−2sq−2d/sq−1dg q Þ 3,

1

2
s1 + td−1 lns1 + td q = 3.

s29d

Asymptotically, the cross correlation is negative because
kabl.−s1/q−2dV and so generically, fluctuations between
the numbers of different species are anticorrelated. Early on,
the cross correlation increases, but after a short transient it
becomes negative(Fig. 2).

In the long time limit,s 2.s1−q−1dV:
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s 2

r
, 5ts3−qd/sq−1d q , 3,

ln t q = 3,

Os1d q . 3.

s30d

Therefore, fluctuations are relevant asymptotically only
whenqø3. Applying the criterionÎNs 2stfd,Nrstfd yields
the final time tf sNd and consequently, the typical final
number of particles

Nf , 5Ns3−qd/2 q , 3,

ln N q= 3,

Os1d q . 3.

s31d

There is an algebraic growth in the fluctuations dominated
regimeq,3. At the critical pointqc=3, logarithmic growth
occurs. Otherwise, the final number of particles saturates at a
finite value. Still, the final number diverges,Nf ,sq−3d−1, in
the vicinity of the critical point,q↓3. The saturation is illus-
trated in Fig. 3 using numerical simulation data for theq

=4 case.
The caseq=2 is special since there is a conservation law

(n−m is conserved) and therefore,V=0. Consequently,s2

,r, t−1. If a q species aggregation, rather than annihilation
process is considered, that is, whenA and B interact the
outcome is eitherA+B→A or A+B→B (both taken with
equal probability), then this anomaly disappears[27,28] and
Eq. (31) holds forq=2 as well.

One may ask “why is the critical number of species equal
to 3?”Mathematically, the answer is ultimately related to the
smaller eigenvalue of the 232 matrix coupling the second
moments. Yet given the simplicity of the multispecies urn
model, a heuristic and more illuminating derivation may be
possible after all. Finding such an argument is an interesting
challenge.

In this context, we mention a generalization of the urn
model from two-particle to the many-particle interactions.
That is, instead of picking two particles,p particles are
picked and if they are all of different species, all are removed
from the system(this process is well defined forpøq). The
rate equations for the second moments yield the critical num-
ber of species(see the Appendix)

qcspd = 2p − 1. s32d

Thus, for ternary interactionsqc=5. The structure of the
phase transition remains the same. There is an algebraic
growth in the total number of remaining particles as a func-
tion of the system size whenq,qc, a logarithmic growth at
the critical pointq=qc, and saturation above the critical point
q.qc. Last, we mention that a similar phase transition un-
derlies two-species reaction processes of the type constructed
from the q-species annihilation by separating species into
two groups. In this case, although the transition depends on
the reaction rates rather than the number of species, its struc-
ture remains the same.

V. CONCLUSION

In summary, we considered interacting particle systems
undergoing depletion on the mean-field level. We showed
that finite-size fluctuations display a rich behavior. The be-
havior is rather generic and applies to a wide class of sto-
chastic processes with a decreasing number of particles.
Typically, there is a phase transition as a function of the
number of species or the reaction rates. In one region of
parameter space, the final number of particles grows algebra-
ically, and in the other, it saturates at a finite value. The
critical case is marked by a logarithmic growth. We conclude
that the final number of particles as a function of system size
provides a practical probe of statistical fluctuations.

The findings in the cyclic trapping model have a neat
game theoretic implication. In a rock-paper-scissor game in-
volving fixed strategy players and loser-is-out rules, the
game ends when all remaining players have the same strat-
egy. If players pair randomly, then the ultimate number of
winners scales logarithmically with the total number of play-
ers. Intuitively, we expect that a similar law emerges for
tournaments with simultaneous play.

FIG. 2. The cross-correlation vs time for the cyclic trapping
model and the three-species annihilation.

FIG. 3. The average total number of particles in the final state as
a function of the system size forq=4. The data represents an aver-
age over 105 realizations of the four-species annihilation process.
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Several questions arise naturally. Can one explain the
critical number of species using heuristic arguments? Statis-
tical properties of the final state and how the system ap-
proaches it are interesting as well. For example, what is the
number distribution of remaining particles? How different
are statistical properties of the system at the very end of the
process when only a single species remains?

We observed that the convergence to the asymptotic be-
havior is much faster when the first extinction occurs com-
pared with the very end state when only a single species
remains. Last, an interesting question involves extremal
characterization[19,20]: What is the probability that one of

the species is always the most or least numerous?
We studied systems undergoing depletion. However, there

are processes in which depletion is possible but not certain,
for example, infection processes[21]. It will be interesting to
investigate finite size fluctuations in this related class of in-
teracting particle systems.
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APPENDIX: p-PARTICLE ANNIHILATION
For p-particle annihilation, the density evolves according to

d

dt
r = − Sq − 1

p − 1
Dr p. sA1d

The evolution operators for the Fokker-Planck equation forF are straightforward generalizations of Eq.s26d. For example, for
the ternarysp=3d annihilation processA+B+C→0,

MABCF = r2s]a + ]b + ]gdfsa + b + gdFg

+
r3

2
s]a + ]b + ]gd2F. sA2d

The second moments are coupled as follows

d

dt
S ka2l

kabl
D = − 2r p−11S

q − 1

p − 1
D sp − 1dSq − 1

p − 1
D

Sq − 2

p − 2
Dsp − 1dSq − 2

p − 2
D + pSq − 2

p − 1
D 2S ka2l

kabl
D + r p1S

q − 1

p − 1
D

Sq − 2

p − 2
D 2 . sA3d

Introducing the time variablet=sp−1dsq−1

p−1dt, the density is simplyr=s1+td−1/sp−1d. The quantityU=ka2l+sq−1dkabl

satisfiessd/dtdU+f2p/ sp−1dgr p−1U=fp/ sp−1dgr p and the solution is againq independent

Ustd =
p

2p − 1
fs1 + td−1/sp−1d − s1 + td−2p/sp−1dg. sA4d

The quantityV=ka2l−kabl satisfiesd/dtV+f2sq−pd / sp−1dsq−1dgr p−1V=fq−p/ sp−1dsq−1dgr p. The solution reads

Vstd =5
q − p

q − s2p − 1d
fs1 + td−1/sp−1d − s1 + td−f2sq−pd/sp−1dsq−1dgg q Þ 2p − 1,

1

2sp − 1d
s1 + td−f1/sp−1dg lns1 + td q = 2p − 1.

sA5d

Interestingly, in the fluctuation dominated regime,q,2p−1, the exponent governing the terminal time isp independent,tf
,Nsq−1d/2. The final number of particles is

Nf , 5Nfs2p−1−qd/2sp−1dg q , 2p − 1,

ln N q= 2p − 1,

Os1d q . 2p − 1.

sA6d
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